

Results of a Phase 2 Double-Blind Placebo-Controlled Study of a Local Muscle Therapeutic, ACE-083, in Subjects with Charcot-Marie-Tooth (CMT) Disease

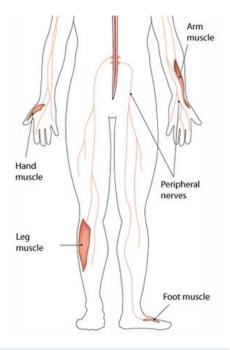
Florian P Thomas¹, Michael Shy², Colin Quinn³, Urvi Desai⁴, David Herrmann⁵, Jeffrey Statland⁶, SH Subramony⁷, Thomas Brannagan⁸, Ali Habib⁹, Chafic Karam¹⁰, Alan Pestronk¹¹, David Walk¹², Russell Butterfield¹³, Nicholas Johnson¹⁴, Ashley Leneus¹⁵, Barry Miller¹⁵, Marcie Fowler¹⁵, Marc van de Rijn¹⁵, and Kenneth M Attie¹⁵

¹Hackensack University Medical Center and Hackensack Meridian School of Medicine, ²University of Iowa, ³University of Pennsylvania, ⁴Carolinas Healthcare System, ⁵University of Rochester Medical Center, ⁶University of Kansas Medical Center, ⁷University of Florida, ⁸Columbia University Medical Center, ⁹University of California Irvine, ¹⁰Oregon Health & Science University, ¹¹Washington University School of Medicine, ¹²University of Minnesota, ¹³University of Utah, ¹⁴Virginia Commonwealth University Medical Center, ¹⁵Acceleron Pharma

1

Disclosures

- Acceleron Pharma supported this study
- Other disclosures:
 - Sanofi, Pharnext, Novartis, Genentech
 - Editor-in-chief of Journal of Spinal Cord Medicine

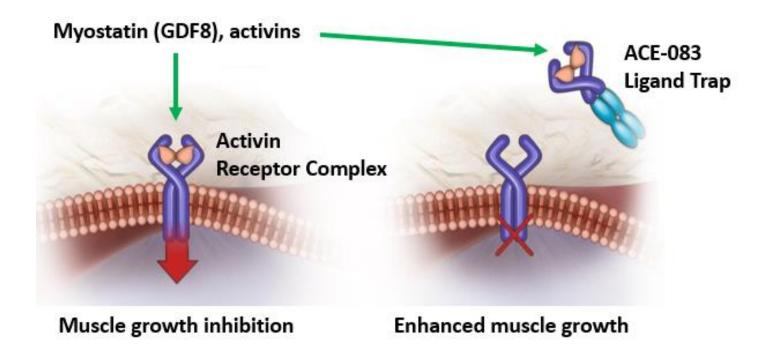

Charcot-Marie-Tooth (CMT) Disease – Introduction

3

- CMT is the most common inherited peripheral neuropathy, with an incidence of 1 in 2500¹
- CMT is a slowly progressive neuropathy that causes predominantly distal arm and leg weakness, motor and sensory nerve loss, and foot and ankle deformities
 - Tibialis anterior (TA) weakness is a cardinal manifestation of disease, with virtually all patients developing weak ankle dorsiflexion, often early in their disease course
 - Weakness of the TA muscle causes foot drop, impairs ambulation, and increases the risk of falls
- CMT has substantial unmet medical need with no drug therapies currently available
 - Orthotics and bracing can be helpful, but compromise gait mechanics and may lead to muscle atrophy and discomfort

CMT Pathophysiology²

Damage to peripheral nerves results in distal sensory disruption and muscle atrophy


- >80 genes identified
- Several sub-types (CMT 1, 2, 4 and X)
- Initially affects myelin sheath (eg, Type 1) or nerve axon (eg, Type 2)

¹Saporta MA, et al. *Neurol Clin* 2013; 31: 597-619 ²Charcot-Marie-Tooth Disease (CMT), https://www.mda.org/disease/ charcot-marie-tooth [Accessed 29 April 2019]

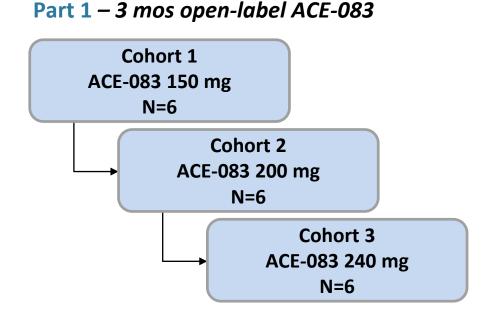
ACE-083 – A Locally-Acting Muscle Therapeutic

- ACE-083 is a locally-acting protein therapeutic in the TGF-β superfamily consisting of a modified form of human follistatin that binds GDF8 (myostatin) *plus* other negative regulators of skeletal muscle
- Designed to be locally injected in affected muscles to increase muscle mass and strength
- Locally increased muscle mass demonstrated in healthy volunteers¹ and patients with FSHD² and CMT³
- Tibialis anterior and biceps were selected as initial muscle targets for a locally acting therapeutic

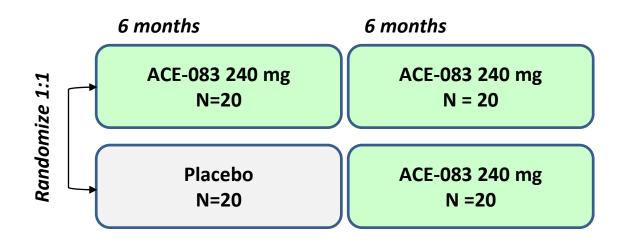
¹Glasser CE, et al. *Muscle Nerve* 2018; 57:921-926

²Statland J, et al. World Muscle Society 2018 Poster 365 ³Shy M, et al. World Muscle Society 2018 Poster 339

ACE-083 CMT Phase 2 Study Design



Key Eligibility Criteria:


- Age ≥ 18 years
- Genetically-confirmed CMT1 or CMTX, or, genetically-confirmed first-degree relative and clinical signs/symptoms of CMT1 or CMTX
- Left and right ankle dorsiflexion weakness
- 6-minute walk distance ≥ 150, ≤ 500 meters

Treatment:

ACE-083 injection into tibialis anterior (TA) muscle bilaterally every 3 weeks

Part 2 − 6 mos placebo-controlled → 6 mos open-label

ACE-083 CMT Study - Part 2 Endpoints

Endpoints measured at Study Day 190 compared to baseline vs placebo control group

Primary Endpoint:

• Improvement from baseline to Day 190 (percent change) in total and contractile muscle volume (TMV, CMV, by MRI) with ACE-083 as compared with placebo

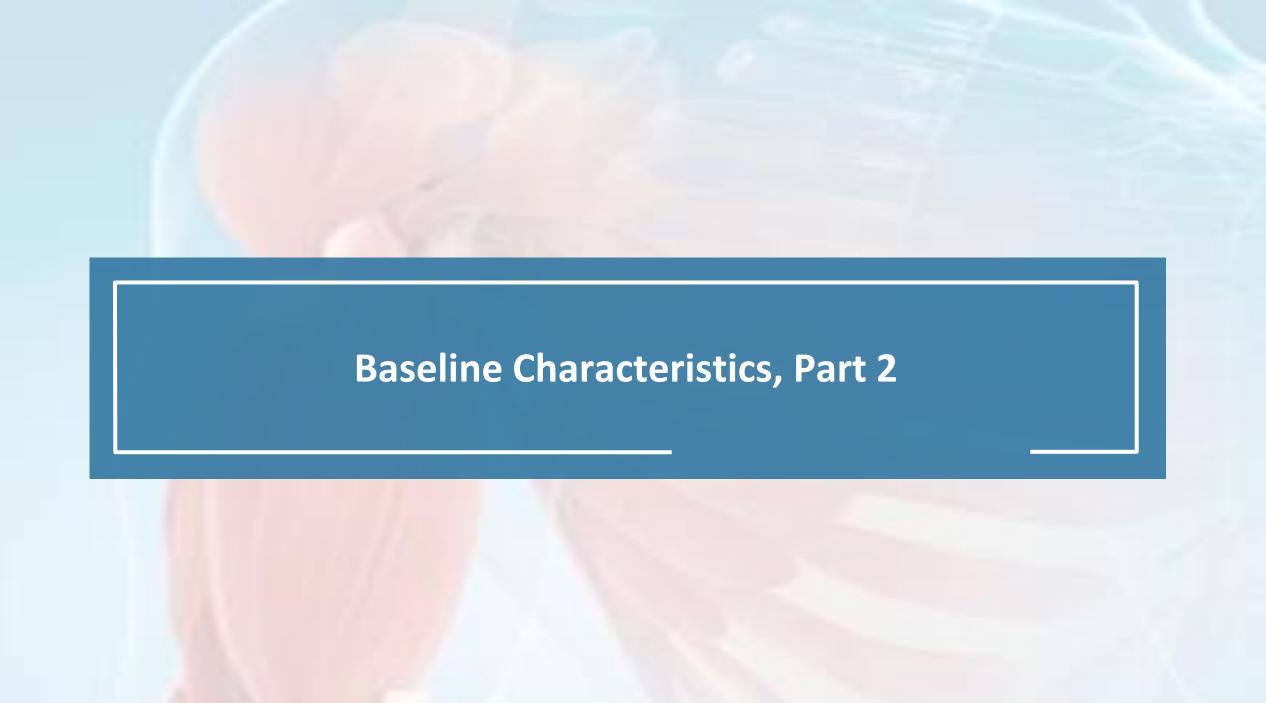
Secondary Endpoints:

Improvement from baseline to Day 190 in:

- Functional tests: 6-minute walk test, 10-meter walk/run, Berg balance scale, CMTES2
- Patient-reported outcomes (PRO): CMT-Heath Index (CMT-HI) total and selected subscale scores
- Ankle dorsiflexion strength (MVIC by hand-held dynamometry and MMT-MRC Grade)
- Fat fraction (FF, by MRI)

Statistical Analysis Populations and Methods

Statistical Analysis Populations:


- <u>Per Protocol Set</u>: All patients randomized who received at least one dose of study drug (includes placebo) with no major protocol violations
- <u>Safety Set</u>: All patients randomized who received at least one dose of study drug (includes placebo)

Statistical Methods:

Efficacy (Imaging, Functional [6MWD, 10mW/R], Strength [MVIC, MMT], CMT-HI):

- ANCOVA of Day 190 percent change (raw change for fat fraction, CMT-HI, MMT) from baseline
 - Least squares (LS) mean with p-value and 90% confidence interval (CI) of treatment group effect
 - Treatment group effect (ACE-083 vs. Placebo) tested using a two-sided, 0.10 significance level

Safety: Adverse events, laboratory tests, anti-drug antibody, vital signs, and ECG data were reviewed and summarized; summary of adverse events will be shown

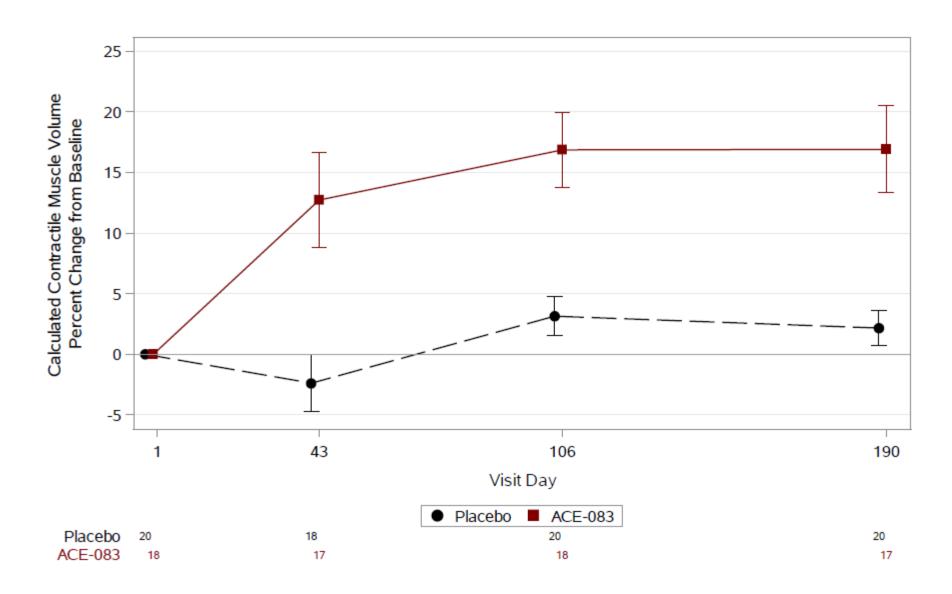
ACE-083 CMT Study – Baseline Characteristics, Part 2 Per Protocol Set

	Placebo (N = 20)	ACE-083 (N = 20)
Age (years)	49.0 (20-71)	46.0 (19-67)
Gender, n (%) Male Female	7 (35%) 13 (65%)	5 (25%) 15 (75%)
CMT disease diagnosis, n (%) CMT1 CMTX	17 (85%) 3 (15%)	16 (80%) 4 (20%)
Form of CMT Demyelinating Axonal Mixed demyelinating and axonal Unknown	14 (70%) 1 (5%) 3 (15%) 2 (10%)	16 (80%) 1 (5%) 2 (10%) 1 (5%)
Duration since onset of symptoms (years)	29.5 (1-64)	24.5 (2-49)
Strength, ankle dorsiflexion MMT, n (%) Mild (MRC Grade 4 to 4+) Moderate (MRC Grade 3 to 4-)	8 (40%) 12 (60%)	10 (50%) 10 (50%)
Fat fraction (%)	29.4 (10.2-53.9)	23.8* (10.2-65.9)
Total muscle mass (g)	56.3 (31.2-148.0)	74.6* (44.3-215.3)

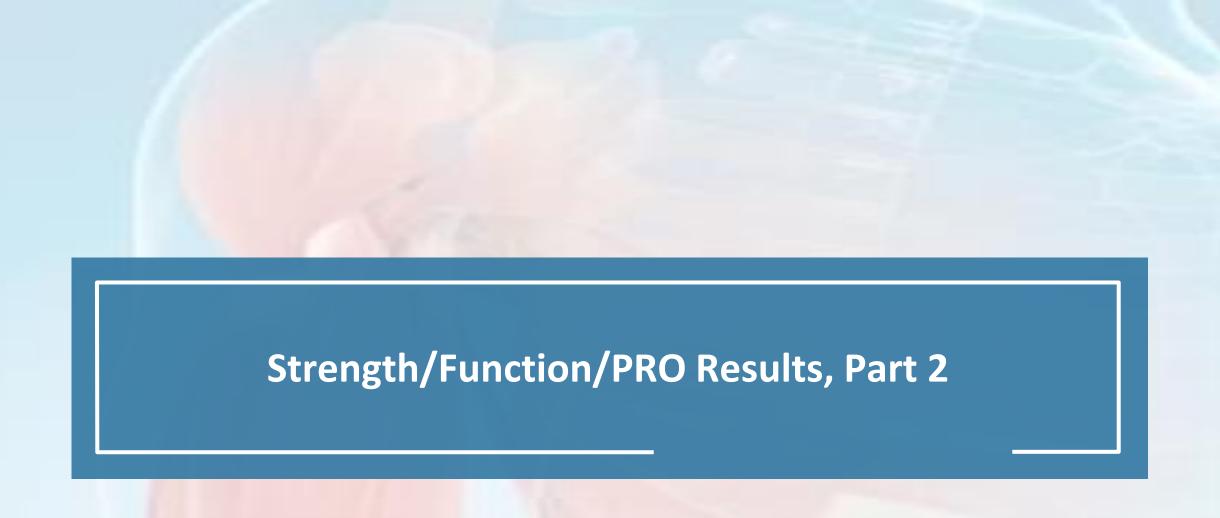
^{*}n=18

Continuous data are presented as median (min - max). Per Protocol Set = all patients randomized who received at least one dose of study drug with no major protocol violations

CMT Study Imaging Results, Part 2 Placebo-Controlled Phase (to Day 190)



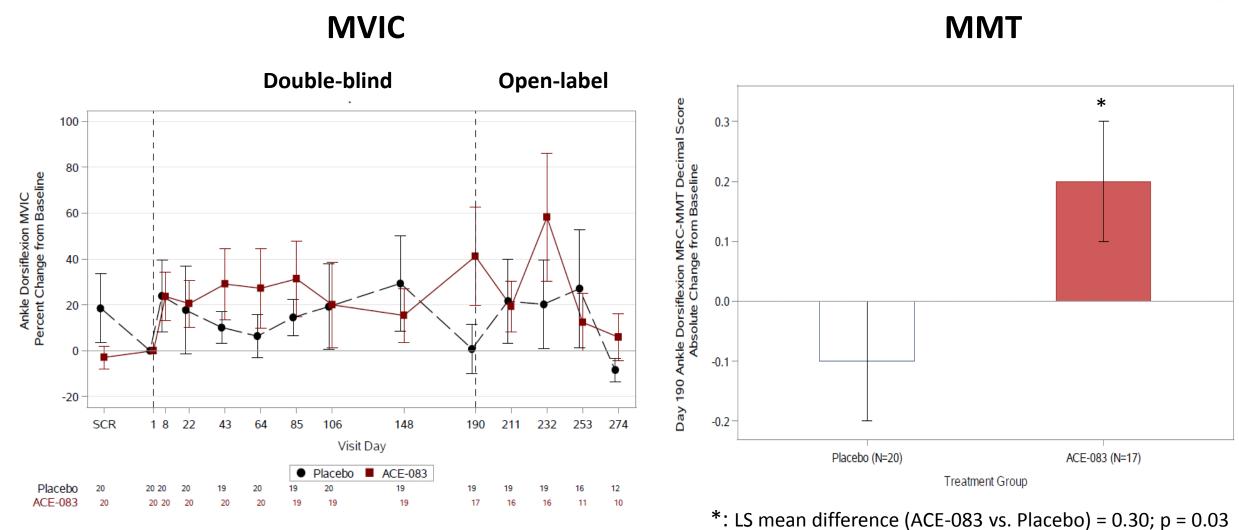
- ACE-083 treatment achieved a 13.5% greater increase in total muscle volume (TMV by MRI) (p=0.01) and a 23.3% greater increase in contractile muscle volume (CMV) vs placebo (p=0.02)
 - CMV = TMV * [(100 Fat Fraction)] / 100


Endpoint	LS Mean (SEM)		Difference (ACE-083 – Placebo)		
	Placebo (N=20)	ACE-083 (N=20)	LS Mean (SEM)	90% CI	p-value
Percent change in TMV	2.2 (4.1)	15.8 (4.3)	13.5 (5.2)	(4.9, 22.1)	0.01
Percent change in CMV	1.7 (7.9)	24.9 (8.6)	23.3 (9.8)	(7.2, 39.4)	0.02
Raw change in Fat Fraction (%)	1.0 (1.8)	-2.1 (1.9)	-3.1 (2.2)	(-6.8, 0.6)	0.16

Mean (SEM) Percent Change in Contractile Muscle Volume (MRI)

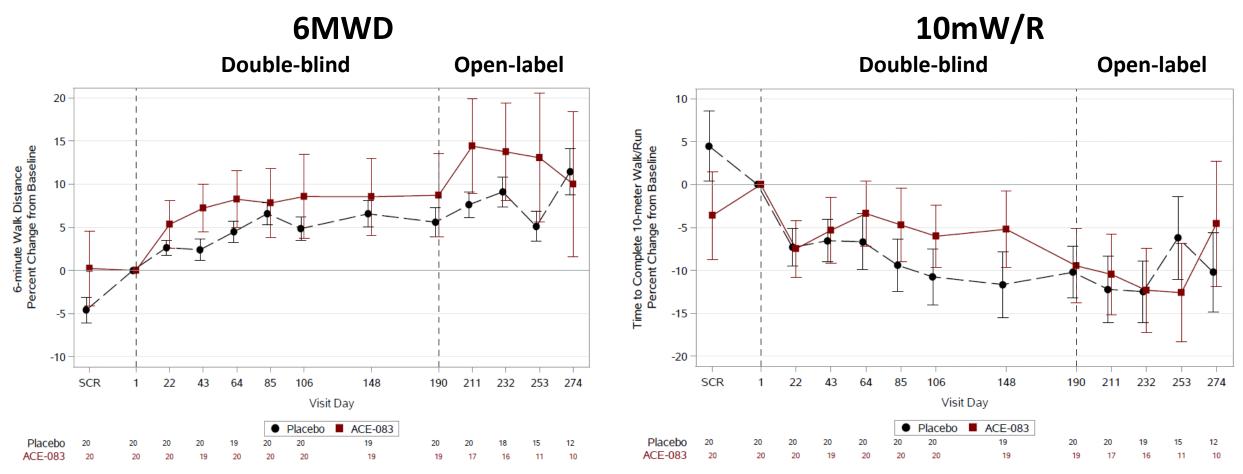
Data as of 14 Feb 2020

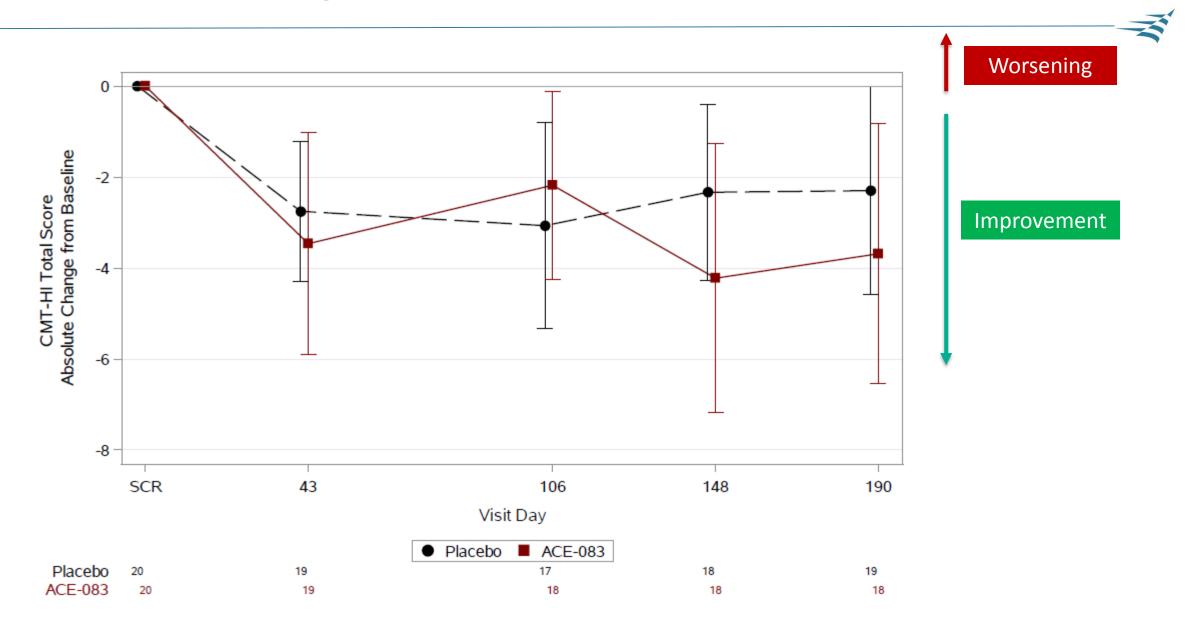
CMT Study Results, Part 2 Placebo-Controlled Phase (to Day 190)



	LS Mean (SEM)		Difference (ACE-083 – Placebo)		
Endpoint	Placebo (N=20)	ACE-083 (N=20)	LS Mean (SEM)	90% CI	p-value
Raw change in ankle dorsiflexion MMT decimal score	-0.1 (0.1)	0.2 (0.1)	0.3 (0.1)	(0.1, 0.5)	0.03
% change in ankle dorsiflexion MVIC	-4.2 (19.8)	30.9 (19.9)	35.1 (23.5)	(-3.6, 73.8)	0.14
Percent change in 6MWD	5.9 (4.0)	9.0 (3.8)	3.1 (4.7)	(-4.7, 10.9)	0.51
Percent change in 10mW/R time	-10.4 (4.7)	-8.7 (4.6)	1.6 (5.4)	(-7.3, 10.6)	0.76
Raw change CMT-HI total score	-0.2 (3.3)	-2.2 (3.1)	-1.9 (3.9)	(-8.4, 4.6)	0.63
Raw change CMT-HI activities subscale score	-4.9 (4.8)	3.5 (4.9)	8.5 (5.7)	(-0.9, 17.8)	0.14
Raw change CMT-HI fatigue subscale score	3.0 (5.1)	-6.7 (5.0)	-9.7 (6.2)	(-20.0, 0.6)	0.12

6MWD = 6-minute walk distance; 10mW/R = 10 meter walk/run; CI = confidence interval; CMT-HI = Charcot-Marie-Tooth Health Index; LS = least squares; SEM = standard error of the mean; MMT = manual muscle test; MVIC = maximum voluntary isometric contraction


Mean (SEM) Change in Ankle Dorsiflexion Strength



Mean (SEM) Percent Change in 6MWD, 10mW/R

Mean (SEM) Absolute Change in CMT-HI Total Score

Data as of 14 Feb 2020

ACE-083 CMT Study –Adverse Events, Part 2

- ACE-083 was generally well tolerated during the double-blind period (to Day 190)
- Majority of AEs were mild/moderate; no drug-related serious adverse events

Possibly or Probably Related AEs Occurring in ≥10% Patients Treated with ACE-083 in the Double-Blind Period

	Double-Bli	Open-Label ACE-083	
Preferred Term	Placebo N=21	ACE-083 N=23	N=40
	n (%)	n (%)	n (%)
At least 1 related TEAE	11 (52.4%)	16 (69.6%)	21 (52.5%)
Injection site erythema	1 (4.8%)	7 (30.4%)	9 (22.5%)
Injection site pain	2 (9.5%)	6 (26.1%)	4 (10.0%)
Injection site swelling	2 (9.5%)	6 (26.1%)	8 (20.0%)
Myalgia	2 (9.5%)	6 (26.1%)	4 (10.0%)
Injection site bruising	1 (4.8%)	6 (26.1%)	5 (12.5%)
Pain in extremity	(4.8%)	6 (26.1%)	5 (12.5%)
Injection site pruritus	0	5 (21.7%)	6 (15.0%)
Injection site discomfort	4 (19.0%)	4 (17.4%)	4 (10.0%)
Injection site warmth	2 (9.5%)	3 (13.0%)	6 (15.0%)
Arthralgia	0	3 (13.0%)	0
Joint swelling	0	3 (13.0%)	1 (2.5%)
Musculoskeletal stiffness	0	3 (13.0%)	0

Note: 4 patients who received at least 1 dose in the double-blind period discontinued prior to the start of the open-label period

ACE-083 CMT Study – Conclusions

- Consistent with previous clinical studies, ACE-083 treatment resulted in statistically significant muscle volume increases and was generally well tolerated
- The placebo-controlled part of this study met the primary endpoint of statistically significant differences in TMV and CMV percent change between ACE-083 and placebo at study day 190 (6 months)
 - 13.5% greater increase in total muscle volume by MRI (p=0.01)
 - 23.3% greater increase in contractile muscle volume (p=0.02)
- Ankle dorsiflexion strength increased by manual muscle testing by 1 level (p=0.03); no statistically significant improvement by dynamometry
- No statistically significant differences in motor function tests or CMT-HI total score
 - There was a trend for improvement in fat fraction by MRI and CMT-HI fatigue score
- Adverse events (non-ISR) more common in ACE-083 group included myalgia, pain in extremity, arthralgia, joint swelling, and musculoskeletal stiffness
- A learning effect was observed for the motor function tests, supporting consideration of a run-in period and appropriate control arm in future neuromuscular studies

Acknowledgements

The authors wish to thank the patients and their families for their participation and contributions as well as the following team members:

Sub-Investigators: Amy Visser, Mazen Dimackie, Georgious Manousakis, Peter Creigh, Russell Butterfield, Lauren Elman, Eric Mittelmann, Nivedita Jerath, Ali Habib, Ludwig Gutmann, Gene Han, Clement Yang

Clinical Evaluators: Katy Eichinger, Deanna DiBella, Melissa McIntyre, Amelia Wilson, Lindsay Baker, Keegan Kitzgerald, Jeff Schilmgen, Denise Davis, Patrick Tierney, Kyle Cunningham, Lauren Draper, Chelsea Bacon, Melissa Currence, Laura Herbelin, Ludo De Wolf, Hope Anneliese Lane, Samantha Pierre, Raphael Kupferman, Molly Stark, Sandy Swanson

Clinical Site Coordinators: Bryant Gordon, Jeanette Overton, Sonya Aziz-Zaman, Amanda Cowsert, Nicole Kressin, Ayla McCalley, Natalya Burlakova, Christine Cavallo, Janet Sowden, Diana Dimitrova

MedPace: Richard Scheyer, MD, Georgiana Salyers, Megan Kolthoff, Taylor Meece, Stephanie Porter, Gina Kavanaugh, Emily Birkmeyer, Katie Ard, Jacob Giltrow, Elizabeth Do, Sabrina Lesh, Courtney Pearce, Leslie Foertsch

Acceleron: B Owens, B Leibo, J Sun, S Qamar, S Harrison, C Barron, J Reynolds

VirtualScopics

BioSensics

ERT